If it's not what You are looking for type in the equation solver your own equation and let us solve it.
19x^2+49x-49=0
a = 19; b = 49; c = -49;
Δ = b2-4ac
Δ = 492-4·19·(-49)
Δ = 6125
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6125}=\sqrt{1225*5}=\sqrt{1225}*\sqrt{5}=35\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(49)-35\sqrt{5}}{2*19}=\frac{-49-35\sqrt{5}}{38} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(49)+35\sqrt{5}}{2*19}=\frac{-49+35\sqrt{5}}{38} $
| -(2x1)=2+(-3x+5) | | -(2x1)=2+(-3x+5 | | 6x-x^2=7 | | x-x^2=1.16 | | 12-5x=4+(4+x) | | 7x-4=2x-1* | | 8(4x−2)=80 | | 25k^2+20k-21=0 | | 2(2x+5)=26 | | x+21=4(x-3) | | -39=4(2x-4)+1 | | 4(4x-5)=44 | | 8y-20=180 | | -2x+28=4(x-4)-4 | | (4x−6)+(3x−1)=14 | | (3x+14)+(5x+1)=31 | | 10x+20=36-3x | | x(0.85)=76 | | x+3+2x+3=66 | | 28=7(x-7) | | 12x+2=44 | | 2p+8=90 | | 5x=41/2x | | 4(4x4)+2x+3=-161 | | -1x=3x-3 | | -1x=3x=3 | | -6x−10=14 | | m√5=14 | | X÷2=28.2,x= | | (40x)-(64x^-2)=0 | | 40x-64x^-2=0 | | (x+8)/12=1-(3/4)x |